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Learned Index...what’s that?
● Problem: traditional data structures don’t account for properties of data

● Index can be thought of as a mapping from key to value 

● Use machine learning to overfit the underlying data distribution

● Structured data inputs: mapping from keys to values is easy to learn

● Benefits of customized indexes: 

○ Scale with complexity, not with data 

○ Leverage specialized hardware & parallelism for fast inference

○ Space saving: think data compression
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Previous Work
● The Case for Learned Index Structures, Kraska et al.

● Learned model to solve 3 kinds of indexes:

○ Existence Index - Bloom Filter

○ Range Index - B-Tree

○ Point Index - Hash Function

● Fall back on traditional data structures for performance guarantees



Learned HashMap



Last Mile Problem & Recursive Model Index (RMI)



Key Insight
Learned Index Structure…

● models the CDF of input data
● operates as a hash function F: U → [m]

○ Element x hashes to bucket F(x)•m
○ Potentially has no collisions
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Motivating Questions
1. Can the learned hash function learn more complex CDF distributions?

○ Kraska et. al used on linear and lognormal datasets



Datasets
Synthetic datasets (size 100,000)

● Linear: uniform distribution in the interval (-5, 5)
○ CDF of a uniform distribution is linear
○ Should be easy for our model to learn

● Lognormal: log-normal distribution with 𝝁 = 0 and 𝝈 = 2
○ Contains a heavy-tail, making the CDF very non-linear
○ Same distribution used by Kraska et. al

● Normal: normal distribution with 𝝁 = 0 and 𝝈 = 0.0001
○ Extremely low variance causes the CDF to contain a large jump within a small range
○ Should be more difficult to learn



Constructing the Datasets
● Sort N sampled keys
● ith key maps to value i/N

○ CDF evaluated at the ith key is approximately i/N

Key Value

-2.5 0.0

-1.2 0.2

0.3 0.4

1.4 0.6

3.6 0.8



Motivating Questions
1. Can the learned hash function learn more complex CDF distributions?

○ Kraska et. al used on linear and lognormal datasets

2. How does the performance of a learned hash function compare with 
traditional hash functions?
○ Kraska et. al primarily used collision rate as the comparison metric



Hash Performance Metrics
Comparison metrics across different hash functions:

● Collision Rate
○ Fraction of the utilized buckets with hash conflicts

● Bucket Utilization
○ Fraction of buckets containing at least 1 element

● Average Bucket Height
○ Equivalent to average runtime for accessing, inserting, or removing in hash-map

Other considerations for learned hash function:

● Memory/number of trained parameters
● Training time
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Calibrated Linear Recursive Structure (CLRS)

Stage 1

Stage 2
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Calibrated Linear Recursive Structure (CLRS)
● Map inputs into some other space so that they are more spread out

● Take advantage of the monotonic relationship between keys and values
○ As keys increase, the values also increase

● Stage 1 Model and Stage 2 Experts are Calibrated Linear Models

● Enforces the monotonic constraint and outputs a prediction



Calibrated Linear Recursive Structure (CLRS)
● Model learns distribution by learning a piecewise linear function 𝚽

○ 𝚽 is determined by a set of knots

● Model calibrates input x by mapping it to a position 𝚽(x)
● 𝚽(x) is fed through a linear regression model to get prediction
● Total number of parameters is determined by number of knots used to 

parameterize 𝚽



Calibrated Linear Recursive Structure (CLRS)
Summary

● Calibrated Linear
○ Helps training by preprocessing inputs so that they are more spread out
○ Takes advantage of the monotonicity between keys and values

● Recursive Structure
○ Breaks prediction into 2 stages
○ Model in stage 1 sends off the input to an expert in stage 2 that makes a prediction
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Baseline Results load factor = 1



Theoretical Bounds
Let h be a uniform, n-independent hash function that hashes elements to n 
buckets. The expected fraction of non-empty buckets after hashing n 
elements is 1 - 1/e.

Proof Outline:

Focus on some bucket i and calculate the probability that at least one 
element hashes to bucket i : 1 - (1 - 1/n)^n

Use Linearity of Expectation and notice that as n increases, (1 - 1/n)^n 
approaches 1/e

This yields 1 - 1/e (or approximately 0.632), as desired



Baseline Results
Pretty close to 1 - 1/e (≈0.632)!



Theoretical Bounds
Let h be a uniform, n-independent hash function that hashes elements to n 
buckets. The expected fraction of buckets containing a collision after 
hashing n elements is at most 1 - 2/e.

Proof Outline:

Similar to earlier, focus on some bucket i and calculate the probability that 
at least two elements hash to bucket i : 1 - (1 - 1/n)^n - (1 - 1/n)^(n - 1)

Use Linearity of Expectation and notice that as n increases, (1 - 1/n)^n 
approaches 1/e

Upper bound (1 - 1/n)^(n - 1) to (1 - 1/n)^n, which yields 1 - 2/e (or 
approximately 0.264), as desired



Baseline Results
Collision Rate ⨉ Bucket Util = 0.41 ⨉ 0.63 = 
0.2583, which is pretty close to 1 - 2/e (≈0.264)!



Learned Index Results



Analysis
● CLRS uses 10 experts and all Calibrated Linear Models use 1000 knots

○ Total number of trained parameters ≈ 11,000

● Models are trained for one epoch (2-3 min)

● Normal distribution performs poorly on stage 2
Expert Range
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Conclusion
● Learned CDF, when used as a hash function, has the potential to improve 

bucket utilization, collision rate and average bucket height
● The improvements don’t hold for all distributions: when the CDF is very 

non-linear, the experts may have difficulty learning piecewise 
distributions

● Besides usage pattern and architecture of the data structure, how much 
benefit we can reap from learned indexes is also influenced by the 
underlying data distribution



Future Work
● Additional model complexity
● Adaptive expert assignment: more experts for ranges in CDF that are hard 

to learn
● Principles for designing hybrid architecture: 

○ e.g. when memory is limited, how much should we improve stage 1 model vs 
increase number of experts?

● Multidimensional data (joint distribution)
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