
CLRS - An Introduction to Learned Hash Index

Eric Xu

Thao Nguyen

Jesse Doan



Bucket List
❏ Introduction

❏ Previous Work

❏ Motivation

❏ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Bucket List
❏ Introduction

❏ Previous Work

❏ Motivation

❏ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Learned Index...what’s that?
● Problem: traditional data structures don’t account for properties of data

● Index can be thought of as a mapping from key to value 

● Use machine learning to overfit the underlying data distribution

● Structured data inputs: mapping from keys to values is easy to learn

● Benefits of customized indexes: 

○ Scale with complexity, not with data 

○ Leverage specialized hardware & parallelism for fast inference

○ Space saving: think data compression



Bucket List
✓ Introduction

❏ Previous Work

❏ Motivation

❏ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Previous Work
● The Case for Learned Index Structures, Kraska et al.

● Learned model to solve 3 kinds of indexes:

○ Existence Index - Bloom Filter

○ Range Index - B-Tree

○ Point Index - Hash Function

● Fall back on traditional data structures for performance guarantees



Learned HashMap



Last Mile Problem & Recursive Model Index (RMI)



Key Insight
Learned Index Structure…

● models the CDF of input data
● operates as a hash function F: U → [m]

○ Element x hashes to bucket F(x)•m
○ Potentially has no collisions



Bucket List
✓ Introduction

✓ Previous Work

❏ Motivation

❏ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Motivating Questions
1. Can the learned hash function learn more complex CDF distributions?

○ Kraska et. al used on linear and lognormal datasets



Datasets
Synthetic datasets (size 100,000)

● Linear: uniform distribution in the interval (-5, 5)
○ CDF of a uniform distribution is linear
○ Should be easy for our model to learn

● Lognormal: log-normal distribution with 𝝁 = 0 and 𝝈 = 2
○ Contains a heavy-tail, making the CDF very non-linear
○ Same distribution used by Kraska et. al

● Normal: normal distribution with 𝝁 = 0 and 𝝈 = 0.0001
○ Extremely low variance causes the CDF to contain a large jump within a small range
○ Should be more difficult to learn



Constructing the Datasets
● Sort N sampled keys
● ith key maps to value i/N

○ CDF evaluated at the ith key is approximately i/N

Key Value

-2.5 0.0

-1.2 0.2

0.3 0.4

1.4 0.6

3.6 0.8



Motivating Questions
1. Can the learned hash function learn more complex CDF distributions?

○ Kraska et. al used on linear and lognormal datasets

2. How does the performance of a learned hash function compare with 
traditional hash functions?
○ Kraska et. al primarily used collision rate as the comparison metric



Hash Performance Metrics
Comparison metrics across different hash functions:

● Collision Rate
○ Fraction of the utilized buckets with hash conflicts

● Bucket Utilization
○ Fraction of buckets containing at least 1 element

● Average Bucket Height
○ Equivalent to average runtime for accessing, inserting, or removing in hash-map

Other considerations for learned hash function:

● Memory/number of trained parameters
● Training time



Bucket List
✓ Introduction

✓ Previous Work

✓ Motivation

❏ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Calibrated Linear Recursive Structure (CLRS)

Stage 1

Stage 2



Calibrated Linear Recursive Structure (CLRS)



Calibrated Linear Recursive Structure (CLRS)



Calibrated Linear Recursive Structure (CLRS)
● Map inputs into some other space so that they are more spread out

● Take advantage of the monotonic relationship between keys and values
○ As keys increase, the values also increase

● Stage 1 Model and Stage 2 Experts are Calibrated Linear Models

● Enforces the monotonic constraint and outputs a prediction



Calibrated Linear Recursive Structure (CLRS)
● Model learns distribution by learning a piecewise linear function 𝚽

○ 𝚽 is determined by a set of knots

● Model calibrates input x by mapping it to a position 𝚽(x)
● 𝚽(x) is fed through a linear regression model to get prediction
● Total number of parameters is determined by number of knots used to 

parameterize 𝚽



Calibrated Linear Recursive Structure (CLRS)
Summary

● Calibrated Linear
○ Helps training by preprocessing inputs so that they are more spread out
○ Takes advantage of the monotonicity between keys and values

● Recursive Structure
○ Breaks prediction into 2 stages
○ Model in stage 1 sends off the input to an expert in stage 2 that makes a prediction



Bucket List
✓ Introduction

✓ Previous Work

✓ Motivation

✓ Calibrated Linear Recursive Structure (CLRS)

❏ Results

❏ Conclusion & Future Work



Baseline Results load factor = 1



Theoretical Bounds
Let h be a uniform, n-independent hash function that hashes elements to n 
buckets. The expected fraction of non-empty buckets after hashing n 
elements is 1 - 1/e.

Proof Outline:

Focus on some bucket i and calculate the probability that at least one 
element hashes to bucket i : 1 - (1 - 1/n)^n

Use Linearity of Expectation and notice that as n increases, (1 - 1/n)^n 
approaches 1/e

This yields 1 - 1/e (or approximately 0.632), as desired



Baseline Results
Pretty close to 1 - 1/e (≈0.632)!



Theoretical Bounds
Let h be a uniform, n-independent hash function that hashes elements to n 
buckets. The expected fraction of buckets containing a collision after 
hashing n elements is at most 1 - 2/e.

Proof Outline:

Similar to earlier, focus on some bucket i and calculate the probability that 
at least two elements hash to bucket i : 1 - (1 - 1/n)^n - (1 - 1/n)^(n - 1)

Use Linearity of Expectation and notice that as n increases, (1 - 1/n)^n 
approaches 1/e

Upper bound (1 - 1/n)^(n - 1) to (1 - 1/n)^n, which yields 1 - 2/e (or 
approximately 0.264), as desired



Baseline Results
Collision Rate ⨉ Bucket Util = 0.41 ⨉ 0.63 = 
0.2583, which is pretty close to 1 - 2/e (≈0.264)!



Learned Index Results



Analysis
● CLRS uses 10 experts and all Calibrated Linear Models use 1000 knots

○ Total number of trained parameters ≈ 11,000

● Models are trained for one epoch (2-3 min)

● Normal distribution performs poorly on stage 2
Expert Range





Bucket List
✓ Introduction

✓ Previous Work

✓ Motivation

✓ Calibrated Linear Recursive Structure (CLRS)

✓ Results

❏ Conclusion & Future Work



Conclusion
● Learned CDF, when used as a hash function, has the potential to improve 

bucket utilization, collision rate and average bucket height
● The improvements don’t hold for all distributions: when the CDF is very 

non-linear, the experts may have difficulty learning piecewise 
distributions

● Besides usage pattern and architecture of the data structure, how much 
benefit we can reap from learned indexes is also influenced by the 
underlying data distribution



Future Work
● Additional model complexity
● Adaptive expert assignment: more experts for ranges in CDF that are hard 

to learn
● Principles for designing hybrid architecture: 

○ e.g. when memory is limited, how much should we improve stage 1 model vs 
increase number of experts?

● Multidimensional data (joint distribution)



Bucket List
✓ Introduction

✓ Previous Work

✓ Motivation

✓ Calibrated Linear Recursive Structure (CLRS)

✓ Results

✓ Conclusion & Future Work



Thank You
References:

1. Gupta, Maya, et al. "Monotonic calibrated interpolated look-up tables." 
The Journal of Machine Learning Research 17.1 (2016): 3790-3836.

2. Howard, Andrew, and Tony Jebara. "Learning monotonic transformations 
for classification." Advances in Neural Information Processing Systems. 2008.

3. Ke, Guolin, et al. "Lightgbm: A highly efficient gradient boosting decision 
tree." Advances in Neural Information Processing Systems. 2017.

4. Kraska, Tim, et al. "The Case for Learned Index Structures." Proceedings of 
the 2018 International Conference on Management of Data. ACM, 2018.


