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Abstract

Learned index structures are rapidly sparking more interest within the machine
learning and data systems communities, as the work of Kraska et al. [4] reveals that
learned indexes are competitive with traditional indexes in terms of both speed and
memory. Learned indexes ultimately model the cumulative distribution function (CDF)
of a dataset, and by scaling up the outputs, we can treat the learned indexes as hash
functions. In this paper, we extend the recursive model in [4] to learn the CDFs of
other distributions, such as uniform, lognormal, and normal distributions. Moreover,
we leverage the monotonicity of the CDF by using a Calibrated Linear Model as the
submodules in the recursive model. We show that our model yields improvements, in
terms of collision rate, bucket utilization, and average bucket height, over traditional
hash functions for synthetic linear and lognormal datasets.

1 Summary of Learned Index Structures

1.1 Introduction

Databases are becoming more and more widespread in a number of fields including business,
education, and computer science, just to name a few. It’s used not only to store and sort
data and important information, but also to have quick and accurate retrievals of data.

When it comes to efficiency, we have seen usage of various index structures that corre-
spond to different operations on the database. One example that we have seen from CS 166
is B-Trees, which help us retrieve an entry from a sorted array given the key.

However, these data structures are general-purpose and disregard any inherent patterns
that may exist in this data. For example, if we have collected data about a company’s sales
throughout a month, there may be temporal trends that one can take advantage of to create
an efficient data structure for querying. This is where Kraska et al. [4] draws a similarity
between traditional index structures and machine learning (ML) models. An index (e.g. a
B-Tree index) can be thought of as a function that given some key, it outputs a definite
value, often measured in relation to the whole dataset (e.g. position within an array of
sorted records). Similarly, a model takes in an input and outputs a prediction.

The original paper argues for the potential of machine learning to learn the underlying
patterns in the data and consequently produce specialized index structures, which are called
learned indexes. This would, in turn, drastically improve the performance of database
systems on real-world data sets. The paper studies 3 types of indexes, namely existence
index, range index, and point index, the last of which is the main focus of our project.

In the next few sections, we briefly summarize our main takeaways from the paper that
we piggy-back off in this paper.
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1.2 From CDFs to Indexes

One observation from [4] is that a model that predicts the position of a key inside a sorted
array is capable of approximating the cumulative distribution function (CDF) of the data.
We can leverage this learned CDF to predict the position as: p = F (Key) ∗ N , where p is
the position estimate, F (Key) is the estimated CDF for the data to estimate the likelihood
to find a key smaller or equal to the look-up key P (X ≤ Key), and N is the total number
of keys. In simpler terms, given a desired look-up key, we have an estimated CDF which we
then scale by N keys to find a position estimate.

Figure 1: Indexes as CDFs

1.3 The Last Mile Problem/Recursive Model Index

While learned models are excellent at capturing the general distribution of the input data,
they sometimes have trouble with the “last mile” - learning the fine-grained details in a small
range. Typically, models can achieve higher accuracy in narrowing down output positions
at the cost of significantly more space and CPU time. This trade-off explains how a model
can be efficient in approximating, say, the general shape of a CDF, but have difficulty being
precise at the singular data instance level.

In order to address this issue to achieve better accuracy, we can use simpler models on
different portions of the data so that they can just focus on learning a subset of the data.
From this, Kraska et al. proposes the recursive regression model (seen in the figure below).

For this model, we create a hierarchy of models where, at each stage, the model takes
the key as an input and picks another model based on it, until we reach the final stage to
predict the position.

The formal definition is as follows: define model f(x) where x is the key and y ∈ [0, N)
the position. At stage `, there are M` models. At stage 0, train the model to be f0(x) ≈ y.

For model k in stage `, denoted by f
(k)
` , train it with the following loss:

L` =
∑
(x,y)

(f
bM`f`−1(x)/Nc
` (x)− y)2 L0 =

∑
(x,y)

(f0(x)− y)2.

A simpler way to think about the models is that each model makes a prediction with some
error about the position for the key and then that prediction is used to select the next model,
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Figure 2: Staged Models

which seeks to make a better prediction and lower the error. Kraska et al. propose that
this architecture has several benefits including how it resembles a B-Tree in in dividing the
search space into smaller sub-ranges, making it easier to reach the “last mile” accuracy with
fewer operations.

1.4 Point Index

(a) Traditional Hash-Map (b) Learned Hash-Map

Figure 3: Traditional Hash-Map vs. Learned Hash-Map

When performing point look-ups, hash-maps play an important role. We can apply the
same concept of learning an ML model that functions as a traditional hash-map (see figure
below). This is done by leveraging what we saw earlier in learning the CDF. We can scale
the CDF by the targeted size M of the hash-map and use h(K) = F (K) ∗M , with key K as
our hash function. As a result, no conflicts would exist if the model F perfectly learned the
empirical CDF of the keys, provided that we have as many buckets as the number of keys,
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which is commonly the case in real-world applications. To estimate the CDF, we again use
the recursive model architecture as described in the previous section.

Ultimately, [4] shows some promising results that make a case for the benefits that learned
indexes can provide. Comparing the performance between the learned index and B-Tree
reveals memory reductions and faster look-ups offered by the former. They also show con-
siderable decrease in conflicts with the learned hash-map.

Overall, Kraska et al.’s main contribution is to explain and justify a new approach to
building indexes, opening up an exciting new direction in research. Although ML is tradi-
tionally considered to be computationally expensive, the paper takes into account existing
developments in hardware and argue for the increased viability of these learned models.

2 Our Approach

Inspired by the results in [4], we further explore the ability for a model to learn the CDF of
various distributions, and we report our findings in this paper. More specifically, we develop
a model that learns CDFs to act as a hash function. While traditional hash functions satisfy
nice properties such as n-independence, they still have a sizeable expected collision rate (as
shown in Section 3.4). However, as mentioned in [4], a model that correctly learns the CDF
will have no conflicts. Hence, we benchmark traditional hash functions against our learned
model using various metrics described in Section 3.2. We also discuss the memory usage (in
terms of the number of trained parameters) and the training time for our learned model.

2.1 Baseline

As baselines, we use a MD5 hash function from the built-in Python hashlib library, and
Murmur3. For Murmur3 and MD5, we convert our input datapoints into strings from their
numeric value (floats or integers). From here, we feed these strings into the hash function.

2.2 High Level Model Architecture

Figure 4: Learning Experts
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Our method is based off the Recursive Model Index (RMI) as discussed in section 1.3. We
have 2 stages: stage 1 model takes in a key (i.e. a value sampled from the distribution) and
tries to predict its position in the CDF. Based on this rough estimate, it finds the expert on
the lower layer in charge of that range and the expert tries to do the same prediction task
again (see Figure 4). We experiment with various architectures for both the stage 1 model
and the stage 2 experts.

2.3 Replicating Results in [4]

We first try to reproduce the performance in the original paper for the lognormal dataset,
but encounter a lot of instability during training. For our initial experiments, we use the
same architecture as mentioned in [4]: neural networks with fewer than 2 hidden layers and
ReLU activation for stage 1, and linear regression models (no hidden layer) for stage 2. As
a result, we explore several alterations to the original architecture, including:

• Increase the gap between consecutive positions: Given that our dataset size is on the
order of 105, the margin of error between 2 consecutive positions is on the order of
10−5. We hypothesize that this small difference may incur some difficulty for weight
updates and learning rate selection. Thus, we experiment with scaling the gap between
labels by orders of magnitude. We observe that the model also scales its outputs
correspondingly to lower the training loss, but stops improving after predicting values
of median magnitude.

• Tree-based Regressor: we try LightGBM [3], which can enforce monotonic constraints
between inputs and outputs during tree splitting and are able to get more overfitting
compared to using neural networks. However, the accuracy level is still not good
enough.

• Convert stage 1 to classification task: we obtain high accuracy in expert assignment by
converting stage 1 task from position regression to multiclass classification. However,
this does not seem to align with the purpose of having stage 1 as a coarse learned point
index.

Learning rate and the magnitude of the data after preprocessing seem to play an impor-
tant role in making the model converge to good optima. Unfortunately, the original paper
did not disclose full details on how their hyperparameters were tuned. We also apply the
same architecture to a dataset that follows a uniform distribution, which is supposed to be
easy given the linear relationship between keys and positions, but we are unable to obtain a
good performance.

2.4 Calibrated Linear Model

Note that our keys and positions follow a strict monotonic relationship (as the key value
increases, the position also increases). This narrows down the space of possible outputs
for a given key given its neighboring keys, so a model that can understand this relationship
should be able to learn the distribution better. As a result, we make use of Calibrated Linear
Models (CLM) which enforces this monotonic relationship during training.
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We use TensorFlow Lattice calibrated linear regressor which instantiates a linear
regression model that calibrates the input using piece-wise linear calibrated functions and
then linearly combines the inputs [1]. The algorithm for training this regressor is based off
of [2], which Howard and Jabara attempt to simultaneously learn a monotonic transformation
Φ and a hyperplane classifier that predicts a label y given an input Φ(x).

More specifically, they parameterize Φ as a piece-wise linear function using a set of
K knots {z1, z2, ..., zK} and associated positive weights {m1,m2, ...,mK}. Then we have
Φ(x) =

∑K
i=1miφi(x) where

φi(x) =


0 x ≤ zi
x−zi

zi+1−zi zi ≤ x < zi+1

1 x ≥ zi+1

They then combine these constraints with a standard support vector machine formulation
to obtain the final optimization problem.

The architecture provided by TensorFlow Lattice, calibrated linear regressor, has a
similar formulation; it learns a monotonic mapping from the inputs to a feature space and a
linear regression model in that feature space. As a result, the number of parameters trained
is proportional to the number of knots, or O(K).

Consequently, we utilize CLMs as the submodules in our final architecture. At stage 1,
we train a CLM that predicts a rough estimate for the position of each key. Then for stage 2,
we train E experts, each of which are also CLMs. The ith expert is responsible for positions
in the interval

[
i
E
, i+1

E

)
for 0 ≤ i < E. Therefore, if the stage 1 CLM predicts ŷ for some key

k, key k is then fed through the expert with index bŷ ·Kc to obtain its final prediction.
Ideally, each expert learns a small interval of the CDF. The ideal performance is depicted

in Figure 5.

(a) Indexes as CDF (b) Creating Experts

Figure 5: From Input Data to Experts
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3 Experiments

3.1 Datasets

We generate several synthetic datasets, each of size N = 100000. To generate the values for
each dataset, we sample N points from the given distribution to use as input values and sort
them in increasing order. Then the CDF at the ith point in sorted order is approximately
i/N , which we use as output value for our predictive models. Each dataset is split with
the ratio of 60:20:20 for train, validation and test sets respectively. These datasets contain
different characteristics that we hope illuminate the ability (and inability) of the trained
models to capture the underlying known CDFs:

• linear: This dataset is drawn from a uniform distribution in the interval (−5, 5). The
CDF of a uniform distribution is linear, which should be easy for our model to learn.

• lognormal: This dataset is drawn from a log-normal distribution with µ = 0 and
σ = 2. It contains a heavy-tail, making its CDF very non-linear. In addition, Kraska
et. al used this log-normal dataset with the same parameters as a dataset in [4].

• normal: This dataset is drawn from a normal distribution with µ = 0 and σ = 0.0001.
The extremely low variance causes the CDF to contain a large jump within a small
range (centered around 0), which increases its difficulty.

3.2 Metrics

For all of the data structures, we use a load factor of 1, meaning that the number of slots/
buckets is equivalent to the size of the dataset.

Compared to the reported results for learned hash index in the original paper (see Figure
8 in [4], we feel that having multiple metrics other than conflict rate give a more complete
picture of our model’s ability to capture the spread of the data. Thus, we define the following
metrics:

• Collision Rate: The ratio of the number of buckets containing at least 2 elements to the
number of buckets containing at least 1 element (i.e. fraction of the utilized buckets
with hash conflicts)

• Bucket Utilization: The ratio of the number of buckets containing at least 1 element
to the number of all available buckets.

• Average Bucket Height: From buckets that contain at least 1 element, the average
number of elements in each bucket. This metric is also equivalent to the average
runtime for accessing, inserting, or removing an element in a hash-map.
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3.3 Baseline Results

Data Set Collision Rate Bucket Util Avg Bucket Height
linear.test 0.416 0.6341 1.577

lognormal.test 0.414 0.6350 1.575
normal.test 0.416 0.6312 1.584

Table 1: MD5 Performance

Data Set Collision Rate Bucket Util Avg Bucket Height
linear.test 0.413 0.6328 1.580

lognormal.test 0.420 0.6310 1.585
normal.test 0.419 0.6307 1.586

Table 2: Murmur3 Performance

In general, we see that MD5 and Murmur3 produce similar performance across different
datasets, with a collision rate of around 0.41, bucket utilization of around 0.63, and average
bucket height of around 1.58. As we show below in Section 3.4, these numbers are nearly
optimal for randomized hash functions.

3.4 Theoretical Verification for Expected Performance

We now prove two results on the expected fraction of nonempty buckets and the expected
fraction of buckets with a collision. Here, we assume we have access to an “ideal” hash
function. Knowing these ratios help us understand how close or far our hash functions are
to the optimal hash function.

To hash n elements into n buckets, we assume our “ideal” hash function to be a uniform,
n-independent hash function.

Theorem 1. Let h be a uniform, n-independent hash function that hashes elements to n
buckets. The expected fraction of nonempty buckets after hashing n elements is 1− 1

e
.

Proof. Let Xi be an indicator variable equal to 1 if bucket i contains at least one element.
The probability at least one element hashes to bucket i is one minus the probability no
element hashes to bucket i. Since h is uniform, the probability any one element does not
hash to bucket i is n−1

n
. Since h is n-independent, the probability none of the n elements

hash to bucket i is the product of the probabilities that each element does not hash to bucket
i, or

(
n−1
n

)n
.

It follows that E[Xi] = Pr(Xi = 1) = 1 −
(
n−1
n

)n
, and by linearity of expectation,

E
[∑n

i=1 Xi

n

]
=

∑n
i=1 E[Xi]

n
= 1 −

(
n−1
n

)n
= 1 −

(
1− 1

n

)n
. Noting that limn→∞

(
1− 1

n

)n
= 1

e
,

we conclude that the expected fraction nonempty buckets is 1− 1
e
, as desired.
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Theorem 2. Let h be a uniform, n-independent hash function that hashes elements to n
buckets. The expected fraction of buckets containing a collision after hashing n elements is
at most 1− 2

e
.

Proof. Let Xi be an indicator variable equal to 1 if bucket i contains at least at least two
elements. The probability at least one element hashes to bucket i is one minus the probability
at most one element hashes to bucket i.

We consider two cases for a particular bucket i. If no element hashes to bucket i, we have
from the previous theorem that this occurs with probability 1−

(
1− 1

n

)n
.

Otherwise, exactly one element hashes to bucket i. There are n possible choices for some
element to hash to bucket i, and since h is uniform, this happens with probability 1

n
. Again,

since h is an n-independent hash function, the probability the other elements do not hash

to bucket i is
(
n−1
n

)n−1
.

Putting everything together, we find that

E[Xi] = 1−
(
n− 1

n

)n

− n · 1

n

(
n− 1

n

)n−1

= 1−
(
n− 1

n

)n−1(
n− 1

n
+ 1

)
Moreover, by linearity of expectation,

E

[∑n
i=1Xi

n

]
=

∑n
i=1E[Xi]

n
= 1−

(
n− 1

n

)n−1(
n− 1

n
+ 1

)
= 1−

(
n− 1

n

)n−1(
2n− 1

n

)
.

But 2n−1
n

> 2(n−1)
n

, so we have

E

[∑n
i=1Xi

n

]
< 1− 2

(
n− 1

n

)n−1(
n− 1

n

)
= 1− 2

(
1− 1

n

)n

Again, limn→∞
(
1− 1

n

)n
= 1

e
, so we conclude that the expected fraction of buckets containing

a collision is at most 1− 2
e
, as desired.

Observe that our metric bucket utilization is the empirical estimate of the expected
number of nonempty buckets. Since 1 − 1

e
≈ 0.632, we see from Tables 1 and 2 that MD5

and Murmur3 in practice perform comparably to an “ideal” hash function.
Since collision rate is the number of buckets with at least two elements divided by the

number of buckets with at least one element while bucket utilization is the fraction of total
buckets with at least one element, the product of these two metrics is the fraction of buckets
containing a collision. Multiplying the two values shown in Tables 1 and 2, we see that they
indeed approach 1 − 2

e
≈ 0.264, demonstrating that MD5 and Murmur3 also achieve the

ideal fraction of buckets containing a collision.
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3.5 Learned Index Results

.

Data Set Collision Rate Bucket Util Avg Bucket Height
linear.test 0.419 0.633 1.579

lognormal.test 0.419 0.631 1.584
normal.test 0.417 0.632 1.582

Table 3: Learned-Index Stage 1 Test Performance

Data Set Collision Rate Bucket Util Avg Bucket Height
linear.test 0.384 0.675 1.482

lognormal.test 0.394 0.666 1.503

Table 4: Learned-Index Stage 2 Test Performance

Our best model uses ten experts in stage 2, and all eleven of the CLMs were trained with
1000 knots. As a result, approximately 11000 parameters are trained in the model. Indeed,
the weights in each model is dominated by m ∈ R1000, for parameterizing Φ. Thus, the
total number of parameters is about 18% of the number of training examples. In general,
we observe a trade-off between the size of the model and its performance.

However, training time is extremely low for the model. The stage 1 CLM only needs one
epoch of training for all three datasets. For the linear dataset, the stage 2 models are also
trained in one epoch, and for the lognormal dataset, the stage 2 models are trained in four
epochs. Overall, the model takes around two to three minutes to train.

Inspecting the results in Tables 4 and 5, we see that even with only 1 layer, our learned
index structure achieves performance on par with the standard hash libraries. When an
additional layer is added to better deal with the last mile problem, we achieve performance
better than tradition hash functions on all 3 metrics.

Unfortunately, we notice that this additional improvement does not apply to the normal
dataset and thus exclude the performance for its corresponding stage 2 from this report. The
low variance of this normal distribution causes the CDF to be practically a step function
at around 0.5. Since the experts are responsible for evenly spaced ranges, its very possible
that one expert is forced to learn this whole step function by itself while the other experts
only need to learn a flat line. Learning the step function is difficult with a linear regression
model, which causes the overall model to not learn the CDF properly. We tried increasing
the number of experts (so that multiple experts can share the burden in learning the step
function), but we did not see substantial improvement in the results.
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(a) On Linear Test Data (b) On Lognormal Test Data

Figure 6: Expert Assignment for Test Data

On the other hand, for the linear and lognormal dataset, we successfully approximate
the CDF using the monotonic functions learned by the ten experts. We plot the estimated
CDFs as a set of piece-wise monotonic functions, as shown in Figure 6.

4 Final Thoughts

As we have shown in this paper, training a model to learn the CDF of a data distribu-
tion yields improvements, in terms of collision rate, bucket utilization, and average bucket
height, compared to traditional hash functions that are near optimal randomized hash func-
tions. However, the model does not perform well for arbitrary distributions; when the CDF
is very nonlinear, the experts in the model are unable to learn accurate piece-wise linear
approximations.

In order to better learn more complex CDFs, a deeper model may be necessary. For
example, we could use more stages to reduce the “last mile” issue. Alternatively, we could
replace the CLMs with a lattice regressor [1], which also enforces the monotonicity between
our inputs and outputs. Also, we could use some adaptive expert assignment algorithm;
instead of dividing the range evenly across experts, we could assign ranges so that the
complexity of the CDF is evenly distributed across the experts.

For future work, we would like to explore hashing multidimensional data and compare it
with hash functions like MD5 and Murmur3.

Our code and experiments are available at https://github.com/thaonguyen19/Learned_
HashMaps.
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Appendix A Plots

The following plots display the element distribution across all buckets with at least 1 element
in it.

(a) On Linear Test Data (b) On Lognormal Test Data (c) On Normal Test Data

Figure 7: Element Distribution for MD5

(a) On Linear Test Data (b) On Lognormal Test Data (c) On Normal Test Data

Figure 8: Element Distribution for Murmur3

13



(a) On Linear Test Data (b) On Lognormal Test Data

Figure 9: Element Distribution for Learned Index

Note that for Figure 9 compared to Figures 7 to 8, we have larger bars corresponding to
the number of buckets with 1 element in it (i.e. the first bar is higher for Figure 9). This
implies a lower collision rate and higher bucket utilization (as we see from our tables from
3.5).
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